Twisted rational functions and series

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Summation of Rational Series Twisted by Strongly $B$-multiplicative Coefficients

We evaluate in closed form series of the type ∑ u(n)R(n), with (u(n))n a strongly B-multiplicative sequence and R(n) a (well-chosen) rational function. A typical example is: ∑ n>1 (−1)2 4n+ 1 2n(2n+ 1)(2n+ 2) = − 4 where s2(n) is the sum of the binary digits of the integer n. Furthermore closed formulas for series involving automatic sequences that are not strongly B-multiplicative, such as the...

متن کامل

Rational series for multiple zeta and log gamma functions

We give series expansions for the Barnes multiple zeta functions in terms of rational functions whose numerators are complex-order Bernoulli polynomials, and whose denominators are linear. We also derive corresponding rational expansions for Dirichlet L-functions and multiple log gamma functions in terms of higher order Bernoulli polynomials. These expansions naturally express many of the well-...

متن کامل

Non-commutative Rational Power Series and Algebraic Generating Functions

Sequences of numbers abound in combinatorics whose generating functions are algebraic over the rational functions. Examples include Catalan and related numbers, numbers of words expressing an element in a free group, and diagonal coe cients of 2-variable rational generating functions (Furstenberg's theorem). Algebraicity is of of practical as well as theoretical interest, since it guarantees an...

متن کامل

On Rational Series and Rational Languages

We study the connections between rational series with coeecients in a semiring and their languages.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1978

ISSN: 0022-4049

DOI: 10.1016/0022-4049(78)90033-6